Posted on

Bypass Antivirus with AV | ATOR

Hello aspiring Ethical Hackers. In this article you will see how to bypass Antivirus with AV | ATOR. AV | Ator is a backdoor generator utility that uses cryptographic and injection techniques to bypass AV detection. The AV in AV | Ator stands for Anti Virus. Ator is character from the Italian Film Series “Ator” who is a swordsman, alchemist, scientist, magician, scholar and engineer with the ability to sometimes produce objects out of thin air.

ATOR takes C# shellcode as input, encrypts it with AES encryption and generates an executable file. ATOR uses various methods to bypass Anti Virus. Some of them are,

Portable executable injection : In portable executable injection, malicious code is written directly into a process (without a file on disk). Then, this code is executed by either invoking additional code or by creating a remote thread. The displacement of the injected code introduces the additional requirement for functionality to remap memory references.

Reflective DLL Injection : DLL injection is a technique used for running code within the address space of another process by forcing it to load a dynamic-link library. This will overcome the address relocation issue.

Thread Execution Hijacking : Thread execution hijacking is a process in which malicious code is injected into a thread of a process.

ATOR also has RTLO option that spoofs an executable file to look like having an “innocent” extension like ‘pdf’, ‘txt’ etc. E.g. the file “testcod.exe” will be interpreted as “tesexe.doc” and of course we can set a custom icon. ATOR can be run on both Windows and Linux. We need Mono to run ATOR on Linux.

Let’s see how to install ATOR in Kali Linux. Clone the ATOR repository from Github as shown below.

Then unzip the zip archive.

Then, Install Mono as shown below.

After moving into the extracted directory, there will be an AVIATOR executable. We just need to run it with Mono.

If you want to run ATOR in Windows, you can just download the compiled binaries from Github . When you run the executable, the ATOR GUI opens.

bypass antivirus with AV | ATOR

Let’s see all the options in detail.
1. It contains the encryption key that is used to encrypt the shellcode. Keep it default if you want.
2. It contains the IV used for AES encryption. Keep it default too.
3. Shellcode in C# format.
4. It will show the encrypted payload.
5. The location to which the generated executable is to be saved.
6. Various Injection techniques.
7. Set a Custom Icon to the executable.

Let’s create the shellcode using msfvenom.

Copy the shellcode generated above and paste it in the payload column. Click on “Encrypt” to see the encrypted payload in (4). Click on (7) to set a custom icon (we are using pdf icon). Select the path of the executable (5) and select the injection technique (6) and click on “Generate EXE” button. Here’s the payload.

Before executing it on the target, start a listener on the attacker machine.

As soon the payload is executed on the target, we will have a shell as shown below.

See how to bypass antivirus with

Posted on

Cracking Wifi passwords automatically with Wifite

Hello aspiring ethical hackers. In this article, you will learn about a tool named Wifite. It is an automatic Wireless password cracking tool that tries almost all known methods of wireless cracking like Pixie-Dust attack, Brute-Force PIN attack, NULL PIN attack, WPA Handshake Capture + offline crack, The PMKID Hash Capture + offline crack and various WEP cracking attacks.
Wifite is installed by default on Kali Linux. Just like any wireless password cracking method, Wifite needs monitor mode to be enabled on the wireless interface as shown below. However, it automatically enables this monitor mode but if it fails to enable it, you can enable it manually as shown below.

Let’s see how Wifite works in cracking WEP, WPA and WPS enabled networks. Once everything is ready, open terminal and start Wifite using command as shown below.

wifite

It starts displaying all the wireless networks in your vicinity as shown below.

Let’s target the Access Point “Hack_Me_If_You_Can” which has WEP security enabled. Once you select the access point you want to target, hit CTRl + C and enter the number of that access point. In our case it is “1”.

As soon as you enter the number of that access point, Wifite tries out various attacks against the access point and grabs its password as shown below.

WEP is too easy. Let’s see how it fares in cracking WPA password. We start Wifite as shown above. Our target is once again “Hack_Me_If_You_Can”. However, as you can see it is secured with WPA now.

It starts attacking employing  various methods as shown below.

Now, let’s target a Access Point with WPS pin enabled.

As you can see, Wifite is successful in cracking WEP, WPA and WPS keys automatically without running any complex commands . Learn how to crack Wifi passwords with Besside-ng.

Posted on 1 Comment

Besside -ng : A tool to hack Wi – Fi automatically

Hello aspiring Ethical hackers. In this article, we will learn about a tool named Besside -ng, which can automatically crack WEP passwords and log WPA handshakes. This tool authored by Andrea Bittau is made in the line of another tool, Wesside-ng which only cracks WEP passwords automatically.

Before you run Besside-ng, monitor mode should be enabled on the wireless interface as shown below.

Once monitor mode is enabled on the wireless interface, we can run Besside-ng as shown below to automatically crack all the WEP passwords and log WPA handshakes.

If you want to crack the WEP password of a single Access Point, the command is as shown below

where “-c” is used to specify the channel the Wireless Access Point is running on and “-b” is the –bssid of the Wi -Fi access point.

how to use besside to crack wifi passwords

Besside-ng automatically starts creating traffic and cracking the WEP key as shown below.

As you can see in the above image, it cracked a 64bit ASCII WEP key in less than 1 minute. How about 64 bit hexadecimal WEP key that’s a bit complex.

This key was cracked in 63 seconds. How long it will take to crack the same key we cracked earlier with aircrack?

It took just 45 seconds to crack the password. This time, I generated a complex WEP key and tried again. The key was cracked in around 15 minutes as shown below.

Here’s the WEP key I set.

Just like cracking WEP, even Cracking WPA can be automated using tool besside-ng. To do this, we run besside-ng on the target wi-fi network.

Besside-ng automatically captures WPA handshake. Then all we have to do is run aircrack on the wpa.cap file.

The WPA key has been cracked successfully.

Posted on

Buffer Overflow for Beginners : Part 2

Hello aspiring Ethical Hackers. In Part 2 of Buffer Overflow foe beginners, we will see how to write an exploit for a buffer overflow vulnerability. In Part 1 of this article, readers have learnt practically as to what buffer overflow is and how a buffer overflow vulnerability can be identified in a program using fuzzing. Our readers have also seen how we exploited it.
But manually fuzzing the program can be tiresome sometimes. In the example we have shown in the previous article, the buffer only needed 32 characters to be overflown but what if the buffer has a very large (let’s say 1000) size. Manual fuzzing in such cases becomes a tiresome process.

We need some automation and simplification. It’s time to introduce PEDA. PEDA is a Python Exploit Development Assistance for GNU Debugger. It enhances the functionality of the GNU Debugger by displaying disassembly codes, `registers and memory information during debugging. It also allows users to create a random pattern within the gdb console and also find the offset etc. We will learn more about the tool practically. This tool can be installed as shown below.

Now let’s go into our C lab and load the program “second” with GDB normally as shown below. This is the same program we have used in Part1 of this article. As the program loads, you will see that the interface now shows “gdb-peda” instead of just “gdb” as in the previous article.

Let us test this program once again for the buffer overflow vulnerability. Here’s the disassembled code of the program “second”.

Let’s create a string of random characters of a specific length, say 50. This can be done using the “pattern_create” command in peda. Copy the random string.

Now let’s run the program. When it prompts you the question, “Name which superhero you want to be”, paste the string we just copied and click on “Enter”. Gdb-peda gives us information about the memory registers as shown below.

buffer overflow for beginers

It also shows us the code being executed but the most important thing it shows is the memory stack.

If you observe the stack of the program above, you can see that the string of random characters we provided as input is allocated into two memory areas. The highlighted part went into first buffer and the rest of the random characters went into the second memory area.

Instead of counting how many characters are in the first memory area, we can find the number of characters using “pattern_offset” command. We copy the random characters that went into the first buffer and use it as shown below to find the offset.

We call it as offset as we need to fill this area with random characters as no code will be executed in this offset area (as in the Part 1 of this article). The offset is 32. Well, since we no- w know the offset, let’s write an exploit for this vulnerable program. Open a new file and write the exploit as shown below.

This is a simple python exploit and the comments should explain you what it does. Let us give you more information about it. The first line of the code is basically telling the exploit to launch a python interpreter. In the second and third line, we are importing pwntools and OS modules respectively. The pwntools library has all the functions needed in penetration testing and OS module has operating system functions. In the next line we declare a variable named “path” and assign it a function os.getcwd() . This function gets the current working directory (If the OS module is not imported, this line will not work).

In the next line, another variable is declared with the name “program” and we assign it the program we want this exploit to target. As our target program is named “second” we give that name. In the next line, the “full_path” variable combines both the “path” and “program” variables to get the full working path of the program. Till this part of the code, we have reached the program we want to exploit.

Now the exploitation part. The “fill_buffer” variable fills the offset area with 32 iterations of “C” (It can be any character of your choice, but make sure its 32 for this program). In the next line we are specifying the command to be executed after the buffer is filled. Here its is “whoami”.

The exploit only works when the buffer is filled and then the command is executed. So we need to combine the “fill_buffer” and “cmd” results. The process() command start the target program while the p.sendline(bof) command sends the output of “bof” to the program already started. The p.interactive() gives the user the control after the exploit runs. Once coding is finished, save the exploit with any name you want. We named it bof1.py. Then run it as shown.

As you can see in the above image, after filling the buffer the exploit was successful in executing the command “whoami”. Now change the command to be executed and run the exploit again.

Once again it runs successfully and executes the command. This gives us a shell. This is how buffer overflow exploits are written.

When most of our readers ask as to which programming language to start learning with in the journey of ethical hacking or penetration testing, Our suggestion is always python and yo -u now know why? Python is very simple but still effective. It has a readable and easily maintainable code compared to other programming languages. Hence, it is very easy to learn. In just about ten lines, you have written the first buffer overflow exploit although its for a intentionally vulnerable program.

Posted on

How to crack wpa2 psk wifi passwords

Hello aspiring ethical Hackers. In one of our previous blogposts, you learnt in detail about WiFi hacking, different wireless threats and security protocols used to secure WiFi. In this blogpost, you will learn how to crack different wireless security protocols with a tool named aircrack ng.

Aircrack-ng is a complete suite of tools to assess WiFi network security. It is a command line tool focusing on different areas of WiFi security like

  • Monitoring: Packet capture and export of data to text files for further processing by third party tools.
  • Attacking: Replay attacks, deauthentication, fake access points and others via packet injection.
  • Testing: Checking WiFi cards and driver capabilities (capture and injection).
  • Cracking: WEP and WPA PSK (WPA 1 and 2).

Let’s see how to crack WEP passwords with aircrack. I bought a new Alfa Wireless Adapter and I want to get straight away into cracking a WEP password. My Attacker machine is Kali Linux which is installed on VMware. So I first connected the GOD given ALFA Wireless adapter to my laptop, make sure it is connected to the virtual machine, open a terminal in Kali Linux and type command “iwconfig” to make sure my wireless adapter is connected.

Then I start monitor mode on the wireless interface. Monitor mode is just like promiscuous mode on wired interfaces. When in monitor mode, the wireless adapter sniffs on all the wireless traffic around.

I once again run the “iwconfig” command to have a look at the wireless interfaces to confirm monitor mode started on the Wireless interface.

As you can see the name of the wireless interface changed from waln0 to wlan0mon. The monitor mode is on. To see all the traffic being observed by the wireless interface, I run the command airodump-ng on the wireless interface.

how to crack wep with aircarck

As you can see, this shows all the wireless traffic. There are many wireless networks available but my target is the Wi-Fi Access point I named “Hack_Me_If_You_Can”. I use the same airodump-ng to target the MAC address of target’s Access point and route all the traffic it has to a file named wep_hc_crack.

In the above image, you can see the clients connected to the targeted Wi-Fi Access point. All the traffic belonging to the Wi-Fi access point hack me if you can will be saved in the file wep_hc_crack.cap. What I am looking for is the initialization vectors that are used in cracking WEP. This initialization vectors play a key role in cracking the password of this Wi-Fi access point.

How? As I already told you, I will not tell you the technical jargon of this article for now. Just remember the more IV’s we have, the more the chances of cracking the WEP password. Since I need more traffic to crack the WEP password fast, I can use some Jugaad to create more traffic. A feature of aircrack-ng, aireplay-ng helps us to create more traffic. It has various methods of creating additional traffic. One such method is ARP request replay attack. According to the website of aircrack,

The classic ARP request replay attack is the most effective way to generate new initialization vectors (IVs), and works very reliably. The program listens for an ARP packet then retransmits it back to the access point. This, in turn, causes the access point to repeat the ARP packet with a ne- w IV. The program retransmits the same ARP packet over and over. However, each ARP packet repeated by the access point has a new IVs. It is all these new IVs which allow you to determine the WEP key. This attack can be started as shown below.

where “-h” option is used to specify the MAC address of any client we want to use. Here is another way in which you can start the ARP replay attack.

As initialization vectors start collecting in the wep_hc_crack file, I can use aircrack to try cracking the password. The command is “aircrack-ng wep_hc_crack.cap“.

If the initialization vectors are too less (in this case I have a new 20) aircrack wait for enough initialization vectors. I continue the ARP request replay attack until traffic increases.

You can see the traffic increasing. All have to do is play the game of patience now .

After collecting almost 25000 IV’s aircrack finally cracked the WEP password. The password of the Wi-Fi access point is 1234567899. It’s a 64bit hexadecimal key. As you can see, it took me around one hour thirty five minutes for me to crack the password.

Now let’s see how to crack WPA/WPA2 with aircrack. WPA stands for Wifi Protected Access. It is an encryption system to secure WLAN networks. It eliminates all known vulnerabilities in WEP(Wired Equivalent Privacy).  WPA uses 128 bit key and  48 bit initialization vector while WEP uses 108 bit key with 24 bit initialization vector. WPA2 is the successor of WPA. Both WPA and WPA2 use temporal key integrity protocol(TKIP) for encryption and  pre-shared key(PSK) authentication.  The only difference between WPA and WPA2 is that they use Rivest Cipher(RC4) and Advanced Encryption Standard(AES) encryption algorithms respectively. Both can be configured to use counter cipher block chaining mode(CCM) though. They are by far considered  most secure for Wifi networks.

On Kali Linux, open terminal and type command “iwconfig”. It lists your wireless interfaces just like ifconfig shows wired interfaces.

We can see that we have a wireless interface wlan0. Now we are going to start monitor mode on our wireless interface. Monitor mode is same as promiscuous mode in wired sniffing. Type command “airmon-ng start wlan0″. We can see below that monitor mode has been enabled on “mon0″.

Now let’s see all the traffic collected by our wireless interface. Type command airodump-ng mon0.

Hit Enter. We can see all the wireless networks available as shown below.

We can see that all the wifi networks are configured with  WPA2 or WPA. We are going to hack the network “shunya”. We will collect the shunya’s network traffic into a file. Open a terminal and type command “airodump-ng –bssid <Mac address of wifi access point> -c 13 –write wpacrack mon0″.

where

–bssid stands for base station security identifier

<MAC address> is the Mac address of access point.

-c is used to specify the channel the wifi network is operating on.

–write to write to a file.

wpacrack  is the file name we are writing into.

mon0 is the interface

Hit Enter. We will see the result as below.

We can only hack a WPA/WPA2 protected wifi network by capturing it’s handshake process or association( when the client is trying to connect to the wifi network.).  So let’s try to disconnect all the clients connected to the wifi network “shunya” first. Open a new terminal and type the command “aireplay-ng  –deauth 100 -a <MAC> –ignore-negative-one mon0″.

where

–deauth are the deauthentication packets,

100 are the number of deauthentication packets we want to send.

-a stands for access point.

<MAC> is the MAC address of the wifi access point.

This command will send 100 DE authentication packets to the broadcast address of the wifi access point. This will make all the clients connected to the shunya get disconnected. As soon as this happens, all the clients will try to connect back to the wifi network once again. We can see that a WPA handshake has happened in the previous terminal.

Now let’s see where our capture file is located. Type “ls”. We will do dictionary password cracking here. So let’s find out where the dictionaries are.  Type command “locate wordlists”. This will show us a number of wordlists available by default in kali linux.

Our captured traffic is stored in .cap file. We will use the wordlist big.txt for cracking the password. Open a new terminal and type command “aircrack-ng wpacrack-01.cap -w /usr/share/dirb/wordlists/big.txt”.

Hit Enter. If our dictionary has the password, the result will be as below. If our dictionary doesn’t have the password, we have to use another dictionary.

Remember that the choice of dictionary will play a key role in WPA/WPA2 password cracking. So that is one way in which we crack wpa wpa2 password  with aircrack for you. Hope this was helpful. Learn how to crack WiFi passwords with Fern WiFi Cracker.